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Abstract. A momentum representation fer-adic quantum mechanics is constructed. It uses

a Fourier transform in thé,-space with respect to the-adic Lebesgue distribution and a study

of its properties. The momentum representation is used to investigate the spectral properties of
the p-adic momentum operator and to study theadic valued) Sclirdinger equation for the
p-adic harmonic oscillator.

1. Introduction

In this paper we continue our investigations on spectral properties of quantum operators
realized in ap-adic Hilbert space (see, for example [1-4] for the quantization irptaelic
Hilbert space and [5-8] fop-adic mathematical physics). In particular, we study-adic
Hilbert space representation of the canonical commutation relation:
[z, p] =il (1)

In [9] it was shown that one can realize the position and momentum opetatarsl p
as bounded symmetric operators in theadic Hilbert space. Then, in [10] we studied the
spectral properties of the position operatorin the L,-space with respect to the-adic
Gaussian distribution [1]. There is a large difference from the standard representation of
the position operator in a complex (separable) Hilbert space. The spectrum pfatie
position operator is concentrated in a ball of finite radius. The radius of this ball depends
on the covariancé of the p-adic Gaussian distribution. We remark that, in ghadic case,
non-equivalent Gaussian distributions exist and, consequently, non-isomdrpkjgaces
with respect to these distributions. We can interpret this choice of the covamarasa
fixing of the exactness of the position measurement. This can be seen as a realization of an
old idea in the discussion of foundations of quantum mechanics that one should take care
of physical equipment in the discussion of the structure of the space of quantum states. In
our framework the fixing of equipment implies the fixing of an exactness for measurement,
expressed in terms of a-adic representation.

In this paper we study the spectral properties of ghadic momentum operatgy. To
do this, we construct the-adic momentum representation using an analogue of the usual
Fourier transform. From the physical point of view, the most interesting result is that, in
general, the spaces of quantum states of position and momentum do not coincide.
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This is not so strange from the experimental point of view; in fact, different preparation
procedure< (e.g. those corresponding to given values of the positions and the momentum
respectively) may produce different quantum states. For example, if we prepare a quantum
statep using a preparation procedufg,s based on a position filter (i.e. we can formally write
¢ = ¢(Epoy), then from the experimental point of view it is not evident that we may prepare
the same statéb by using some preparation procedudig,m based on a momentum filter.
However, if the standard formalism of quantum mechanics is used, then applying the Fourier
transform we can change the representation and (in general, only theoretically) realize each
guantum statep = ¢(Eys (the position representation) as the state= ¢ (Emom) (the
momentum representation). More generally{ef} and{e,,} are two different orthonormal
bases in the complex Hilbert space, then the operator of the change of coordinates from the
base{e,} wherep = Y | p,e, to the basde, } wherep = Y2 ¢/ el is a unitary operator.
Therefore, a change of coordinates does not change the physical properties, i.e. physical
properties of the statg realized asp = Y .- ,¢,e, coincide with physical properties of
the state (which is denoted in the standard formalism of quantum mechanics by the same
symbol ¢) realized asp = > .-, #,e,. Thus from the point of view of ordinary quantum
mechanics there is no difference to prepare the quantumgtasea mixture of statel,}

(for example, corresponding to the position preparation procefige say for a particle

in a box) or as a mixture of statgg,} (for example, corresponding to the momentum
preparation procedui&,.s for a particle in a box). The situation is crucially changed in the
formalism of p-adic quantum mechanics. In tieadic Hilbert space an operator of a change

of coordinates between two orthonormal bases, in general, does not preserve the norm.
From the physical point of view this means that a change of representation may change
physical properties (in fact, the exactness of a measurement) of the system. For this reason
we really need to use the indexes ‘pos’ and ‘mom’ for quantum states to indicate which
representation is used (how these quantum states were prepared). The equivalence of the
different representation in the standard mathematical formalism of quantum mechanics was
not accepted by everybody: for example, de Broglie [11, 12] gave a strong motivation for the
position representation to be the only ‘real physical representation’, all other representations
being then only consequences of the position representation. According to de Broglie, we
can reconstruct all properties of the momentum representation on the basis of the position
representation, but we cannot reconstruct the position representation on the basis of the
momentum representation. The mathematical equivalence of these representations was
considered by de Broglie as a mathematical trick. We do not, however, directly follow
de Broglie: in ourp-adic quantum mechanics the position and momentum representations
appear in a symmetric way. Nevertheless, they give rise to different spaces of quantum
states (see also Ballentine [13, 14] on the connection between a preparation procedure and
the space of quantum states).

From the mathematical point of view, our theory of theadic Fourier transform (for
p-adic valued functions on thg-adic space) also differs very much from the well known
Fourier transform theory op-adic space, see [15-17]. The most important difference is that
our definition of the Fourier operator gives rise to a unitary isometric operator between two
p-adic Hilbert spaces, whereas the standard Fourier transform-&afic valued functions
on the p-adic space [15-17] has a non-trivial kernel.

Using the momentum representation and the results of [10] on the spectral properties of
the position operator in our approach peadic quantum mechanics, we shall give results
on the spectrum of th@-adic momentum operatgy.

In section 5 we shall study the Séldinger equation for a harmonic oscillator:
the statistical interpretation and an analogue of the Heisenberg uncertainty principle are
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discussed in details. In section 6 we shall present results op-tiaic description of finite
exactness of measurements.

2. The p-adic L,-space with respect to Gaussian and Lebesgue distributions

The field of p-adic numbers is denoted by the symi@@y. As usual, we defing-adic balls
Uia) ={x € Q, :|x —al, <r},aeQ,r >0. SetU, = U,(0). Denote the field of
complexp-adic numbers (the completion of the algebraic closur@gfby the symbolC,,.
We shall use this field to define the rodt¥? and»/* for the elements € Q,.

As in our previous paper [10], we consider the case 3 mod 4.

Let b # 0 be ap-adic humber, the-adic Gaussian distribution (with covarianggv,
is defined as &),-linear functional (on the space gf-adic valued polynomials ove®,)
by its moments

Mo, =/x2”vb(dx) = (20!~
nl2n

with No = {0}UN. Then this integral is extended by linearity and continuity to some classes
of analytic functions.
Formally (by analogy with the real case), we can writeas

My, 1 = /xz’”’lvb(dx) =0 n € Np

up(dx) = €5 dr @)

(with dx being a ‘suitably normalized’ Lebesgue measure).

However, this is only a symbolic expression. It does not have a strict mathematical
sense, because there is peadic valued analogue of the Lebesgue measure. Moreover,
further we shall introduce (see (21) below)paadic Lebesgue distribution on the basis of
the Gaussian one.

Let us introduce the analogue of Hermite polynomial€}prcorresponding to the-adic
Gaussian distribution with the covarianee

n! [n/2] (_l)kxn—Zkbk

Hn,b(x) =

b Ll — 2126 S Q. ®)

These polynomials are orthogonal with respect togkedic Gaussian measurg. We shall
also use the following representation for these Hermitian polynomials:

2,5, " 2
H,,(x) = (=1)"¢e" /Zb@e_" /2, 4)

This representation holds on any ball of sufficiently small radius with its centre in zero (see
[9] for details).

Let p = 3, mod 4, then the equatiorf+1 = 0 has no solutions if),. We can consider
the quadratic extensio@, (i) with i = +/=1 of Q,. In analogy with complex numbers we
setz = x +iy, x,y € Q,, i = +/=1, andz = x —iy. The valuation orQ,(i) is also
denoted by - |,, |z], = /IIz|2],, Where|z|*> = zZ = x? + y%. We remark thatz|? assumes
its values in the field),, whereagz|, assumes its values in the field of real numbers.

In previous papers [9, 10] we gave the following definition of fhyespace with respect
to the p-adic Gaussian distribution. The spatg&QQ,, v») of p-adic valued functions of a
p-adic argument is the set

{f(x) = anH,Lb(x), £ € Qi) : the seriesz | fu]?n!/b" converges ier}.
n=0 n=0
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Remark If p # 3, mod 4, then ie Q,. Thus no quadratic extension with respect to i is
possible. The realization of quantum mechanical objects then becomes more complicated.

The requirement as above for functions to belongLtgQ,, v,) is equivalent to the
requirement that

21!
aﬁb(f)zlfnlll’;::b’—)O whenn — oo. 5)
p
The norm and the inner product ip(Q,, v,) are defined by the equalities:
I £1l = maxo,(f) (6)
respectively
(f.9) = [ Feogtmn). @)

If we choose a different parametér we obtain, in general, a differeri>(Q,, v;)
space; the next theorem investigates the relation between thespaces. First, we give
the following lemma.

Lemma 2.1For anyb, c € Q,, b # 0, we have:

2D (c — b)!
/ Hp(xr)ve(dx) = % (8)

if s is even and we have set= 2/; the integral is zero if is odd; the integral is equal 1
if b=cands =0.

Proof.  First, we remark that we can restrict our considerations to thelcase, because
if b =c ands # 0, then both sides of lemma 2.1 are equal to zero (it is also evident that
if b =c ands = 0, then the integral is equal to 1). We have

/ Hy p(x)ve(dr) = [ (~1es ( ds,e*zi) ve(ckv)
dxs

. 2 2 A eiw?
= (—I/b)s <e 2 / ez e 2 V((d—x)> |y=0
dys

= (~i/by (en & / é”vc(dx)> o
dys ;

|

Co e 2l 2 R
=(i/bye zen ——e 2|, =(i/b)’e 2 H,(y)ly=0

d K
= (l/b)s I_Is,n(o) (9)
wheren = _1.. Now, by using the expression
=v'@tn™
H; ,(0) = T
we obtain the proof. O

Remark The exponential function"¢ does not belong to thé,-space (for any value
of the parametey). However, the integral (y) = fei”vg(dx) (the Fourier transform of
the Gaussian distribution) is well defined for the sufficiently smugll}, because Gaussian
integrals are defined for all functions which are analytic on the ball T > 6, =

pH2A=p Jlcl,, see [10].
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Remark In the above proof we have changed the order of integration and differentiation.
In fact to justify this procedure, we have to prove that:

/ 0f'yel"‘zz+“‘-“uc(o|x) = O(ljy / e+, (dv).

As all exponential series converge as geometric progressions for grialive can reduce
this problem to the evident equality for the monomials:

[ gyt = o [,
We shall use the equality
|n!|p — p(n—Sn)/(l—ﬁ) (10)

wheren = Y7 n;p/, n; =0,1,..., p— 1, is ap-adic expansion of the natural number
and S, = Z. n; [18]. Moreover, we shall use the following lemma.

Lemma 2.2.5; 1 < S; + Sk [10].
Theorem 2.11f the p-adic numbers andc verify the relation|c|, < |b],, then

L2(Qp, vp) € L2(Qp, ve). (11)
Proof. Let f € Lo(Q,, vy) and write

)= fuHup ()

whereo?,(f) — 0 whenn — oco.
Now we can expand in the form

F) =" fuHyo(x) (12)
where

fo= % / @) Hy e (0)ve(dx). (13)
At this moment this is only a formal expansion. We shall prove that this series converges
in Lo(Qp, ve).

Expression (13) can be rewritten in the following form by using standard properties of
integration by parts of the Gaussian distribution [1, pp 40-1]:

mem/flm nb(x)vc(dx)

Now, by using lemma 2.1, we obtain

(n + 20)!(c — b)!
IZ:fn-‘er b”l'Z’

I b”n'
and we estimate

2n
lel,

02.(f) <

| |Z+21|C_b|127]
max Oura1p ()2 (n + 2D, P

], lels1bI2 1= 112]4] [b]#

2
" 2|¢ = b7 Swazics
~ b " o N 14
’b max |:<7 +2.6(f) ' b ‘ p :| (14)
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By using lemma 2.2 and the fact thate L(Q,, v;,), we obtain thah,ic(f) approaches
0 if the following relations hold:

c—>b
<1 15
., ] (15)
C
-1 <
‘b‘ <1 (16)
Since relation (15) is a consequence of (16), we obtain the proof. O

A consequence is the following.

Theorem 2.2If the p-adic numbersc, b have the sameg-adic norms, then the spaces
L>(Q,, vy) and L2(Q,, v.) coincide. However, the canonical inclusion (12), (13) is not the
isomorphism ofp-adic Hilbert spaces.

There are difficulties in directly defining the Fourier transform of map&4tQ,, vs),
since the maps, which are-adic analogues of the Hermite functions, are not elements of
L>(Q,, vp). In fact, they are defined by

By (1) = b YA H, (x)e (17)

X2 . . .
The power expansion @ is pointwise convergent only fdix|, < 6 where the constartt
was already defined in [10]

0 =6, = p7n J]b],. (18)
In the following, we shall consider more than one covariance, and we shall add a suffix to
0 to clarify the parameter on which it is depending on.
2
We remark that by computing the Hermitian coefficients ofre we can easily show

2
that e @ does not belong td.>(Q,, vy).

For this reason we shall consider a different functional space, which we shall show to
be isomorphic taL,(Q,, v).

Definition 2.1.Lg’)(Q,,, dx) is the set

{f(x) = anqbn,b(x), fn € Q,() : the seriesz | f.1?n! /B converges in@,,}.
n=0

n=0
Remark The mapsf are defined only fofx|, < 6.
OnLY(Q,, dx) we define the nornj-|| and the inner produgt, -). If f € LY (Q,, dx)
we define|| f[|2 = max, 62, (f). Furthermore, ifu, v € LY (Q,, dx), we define

~n!
. v) =Yy UnTn (19)

In the next theorem we state that the spﬁ.(g@((@p, dx) is isomorphic toL»(Q,, vp).

If £ e LY (@, dx), we setf(x) = Y fudus(x) and definel (f)(x) = 3 foH,p(x) €
L2(Qp, vp).

Theorem 2.3The mapU is an isomorphism (i.e. a unitary and isometric map) between the
two p-adic Hilbert spacesl.y’ (Q,, dx) and Ly(Q,, vy).
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The reader can easily show thétpreserves the norm and the inner product:
(f,8) = U, U @) (20)
By using our Gaussian distribution,, we can define a Lebesgue integral foradic

valued functionsf of the form f(x) = ¢(x)e%f/¢5, lx], < 6, where¢(x) is integrable
with respect to the Gaussian distributfon

f Fode = f ¢ () vy (c). (21)

By using this integral, the scalar product just defined admits the following integral
representation;

(. v) = / u(0)v(x) dr. (22)

Finally, by using theorems 2.2 and 2.3, we easily obtain the following.

Corollary 2.1.If the p-adic numbersh, ¢ verify |b|, = |c|,, then the spaces)’ (Q,, dx)
and LY (Q,, dx) are isomorphic as Banach spaces.

3. Fourier transform of L, maps

Recalling the role played by Hermite functions in the classical harmonic analysis, we define
the Fourier transform as a map of jaadic L,-space into anothep-adic L,-space, as
follows.

Definition 3.1.The continuous linear mag : LY (Q,, dv) — L3’ (Q,, dx) for ¢ = 2
defined as

Flnp)) = (2'b> e (1) (23)

is said to be the Fourier transform between ghadic L(Z")(@p, dx)-space and the-adic
L(zc) (Q,, dx)-space.

In this section, we shall always assume that %.
The main theorem is the following one.

Theorem 3.1The Fourier transfornd is an isomorphism between theadic Hilbert spaces
LY@, dx), LY (Q,, dx) in the sense that it is a linear bijective map frarf’ (Q,. dx)
onto L‘ZL')(Q,,, dx) which preserves the norm and the inner product.

Proof.  First, we show thatF sendsf € LY (Q,, dx) into F(f) € LY (Q,,dx). Write
=2 fubur and computeF (f) =Y, gudn. Whereg, = £,(i/2b)"; since

of.(8) =02,(f) (24)
we see thatF(f) indeed belongs td.y’(Q,, dx).
()
fil5

Further we have
1 In the real case we also have the normalization consgnt. It would probably be useful to do the same in

i n 2
2
IFfI? = H >k <2b) Pn.c
the p-adic case. However, at the moment it is not clear whatadic analogue ofr is.

2
In!l,
= MmaX
n

=712 (25)

el
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Similarly, for the scalar product, if, v € LY’ (Q,, dx)

_ n!
(u,v) = Zunvnﬁ‘ (26)
On the other hand, we obtain
(F(u), F(v)) = Zu (2'b> B <;b'> :—'z (. v). 27)

Now we show thatF admits an inverse map . Letg € LY (Q,, dx), g = 3" gudn.c-
We set

Gg = gn(—2ib)"¢y . (28)

By the same reasons as above, the rfapendsg € Lé“)((@p,dx) into a mapg(g) €
LY (@,, dx) and preserves the norm and the inner product.

Now letg € LY (Q,, dx), g = 3" g.¢n., be the Fourier transform of € LY (Q,, dx).
We have:

G =Y f <2'b) (=2ib)" $n.p = f.
This proves that = F~1. O

Now we wish to relate our definition of the Fourier transform to a more usual integral
form. However, to obtain the integral representation for the Fourier transform, we have
to extend thep-adic Gaussian (and consequently Lebesgue) integrals. We start from the
Gaussian integral. In [10] the Gaussian integral was defined for the following class of
analytic functions.

Denote the space of analytic functiors: U, — Q, by the symbolA(U,). Let
b € Q,,b #0. Then the Gaussian integral

/ f (xvp () i Lo f<0>f 2y (cx) i "o

X = —_— X = -
S £ (2n)! da? ’ 12 e
is well defined for eacly € A(U,), T > 6, where the constarti, is defined by (18). Set
L,(Qp, vp) = Ursp, A(U;). We shall essentially extend this class of functions integrable
with respect to the Gaussian distribution

Lemma 3.1Let b,d € Q,,b,d # 0. Then the function /2 belongs to the class
1,(Qp, vp) iff |b], < |d|,.

Theorem 3.2Let f € 1,(Q,, vy) and|b|, < |d|,. Then

f Fo0)e™ /2y, (dy) = Jth/ £ (xX)v, (dx) t=tyy=bd/(b+d). (29)

Proof. First we prove that the Gaussian integrals in (29) are well definedf &3 and
gx*/2d belong to the clas$,(Q,, v,), these functions belong to the cladsU,) for some

7 > 0,. However, A(U,) is an algebra with respect to the usual multiplication of functions.
Thus, the Gaussian integral on the left-hand side of (29) is defined. Further we have
t =b/(1+b/d); but|1+b/d|, =1, ie.l|t], = |bl,. Henced, = 6, and consequently
L,(Q,, v) = I,(Q,, 1), i.e. the Gaussian integral on the right-hand side of (29) is defined.
As both Gaussian integrals are defined by the term integration of power series, it is sufficient
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to consider the case of monomial functiofigx) = x", n = 0,1, 2,.... We illustrate the
proof by considering the casg = 1.

.2 2 (=Dk(2k)1bF
— x°/2d —
A= /e vp(dx) = kE:O ) (k)22

On the other hand, we have:

~ s (=D*(2k)!
. 172 _ LA A
Vi/b=+bjd) = Zkzo(b/d) (kD222 —

There we have used the binomial expansionQipn (in fact it is important thatp # 2,
ie. |%|p = 1, see [17,18]). In the general casgx) = x", the proof is little bit more
complicated but it is also based on the elementary calculations with the power series.
We now use equality (29) to extend tpeadic Gaussian integral. Létd # 0,b # —d,;
let f € 1,(Q,,v), t = t,4. Then the integral of the functiog,(x) = f(x)e*xz/zd with
respect to the Gaussian distributionis defined by equality (29).
On the basis of this generalized Gaussian integral we extengl #itic Lebesgue integral

(by (21)).

Theorem 3.3Let |x|, < 6, |y|, < 6. (hered,, 6. denote the usual parametewith respect
to the covariances, c respectively), then the following relation holds:

F(pup)(y) = [ Gnp(x)EY dr. (30)

Proof. We have:

/ Gup ()8 dx = b7 / Hyp(0)e & dr = b / &4 HY H, , (x)up (d)

= (—1)"b%/e%+ix-"%vb(dx) =b%/%(e%+i”)vb(dﬂ

:b%ebyZ/%e%()H-Zihy)zvb(dx)

) bie”>‘2;<e—”y2 f e25+i”)ub(dx)>
yVl
2 d: _by? .
v € vz, (dx)
yl’L

e
piote & gam® _ (') (~1)'c e die‘%f
yn

2b
i n
= (219) (pn,c(x)

where, as usuah = 1/4c. We have used the generalized Gaussian integrad fer —2b,
ie. Ipa = 2b. ([l

Now we wish to prove the main properties of the Fourier transform.

Theorem 3.4Assume that all the variables are in their convergence regions: we have

d ik k ot i)k
gk’ L =TFOND P! =EWES (31)
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Proof. First we remark that alL,-functions are infinitely differential and their derivatives
belong to the samé,-space (see [9]).

We only prove the first statement fér= 1, the other statements being obtained in a
similar way. We observe that

d i)' d 1 i\ n
SLFD@ =31 <2b) S =33 fi <2b> [6r1.:0) = "1 )]

(32)
On the other hand, we compute
FOHO =F Y fuybns) =D fuFIbguian(y) + nu15(x)]
= I/ZZ fa <2|b) [¢n+l,c(x) - g‘bn—l,c(x)] (33)
which proves (31) (in the case= 1).
Formally we define the convolution of two magsg as
(f*8)2) = / f(x)g(z —x)dx (34)

(also here we suppose|,, [z|, < #). However, in general the convolution of two,-
functions does not belong to the-space. In fact, there the situation is more ‘pathological’
than in the real case. By direct computations we can prove that the convolution of two
Hermitian functions,f = ¢o, andg = ¢1,, does not belong to the,-space. Therefore, it

is not clear on what domain the standard equali(;f « g) = F f Fg can be considered

to be valid. O

4. The spectrum of the momentum operator

In this section we study the momentum representation by using the properties of the Fourier
transform. We consider the case of a particle moving in one dimension (the extension to
the d-dimensional case being immediate).

If fe L;b) (Qp, dx) we define the momentum operator by

Prw =i 2 ) @)
Now applying the Fourier transform we have
Fpfx)=xFf=aFf

so, we obtain that the spectrum of the momentum operatm‘zl’ﬂi(@p, dx) coincides with
spectrum of the position operator Irg)(Qp, dx), where, as before; = 1/4b.

In [10] we studied the spectral properties of the position operator in the space
L2(Q,, v); since the spaces»(Q,, v;) and LY (Q,, dx) are isomorphic, we obtain the
following theorem.

Theorem 4.1Let |A|, < 6.. Theni belongs to the spectrum of the momentum operator
p. The point spectrum of the momentum operaor LY (Q,, dx) — LY (Q,, dx) is the
empty set.
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5. Exactness of the measurement for the position and momentum of a harmonic
oscillator

In this section we briefly consider the Sodinger equation for a harmonic oscillator on
Qy, i.e.

R? ?

 2mdx?

with v € LY (Q,, dx), k, m, w, E € Q,.

Y(x) + %mwzxzwx) = Ey(x) xeQ, (36)

Remark In our approach we consider the Planck constarihe frequency» and the mass
m of the harmonic oscillator as measured with a finite exactness. Thus, in equation (36)
the numbers:, w, m have the form

Cl:ainp—"+...+a0+...+ampm (37)

with the digitsa; = 0,1, ..., p — 1. Here an exactness(a) = 1/|a|, = 1/p" is fixed for
each quantity:, w, m. The same is valid for the energy leveiswhich also have the form
(37).

There are solutions of (36) (ihy”(Q,, dx)) of the form:

3
V(x) = ¢pp(x) whereb = _— (38)
2mw
andE = hw(n + 3) for any naturak.
The situation is similar to the case of the ordinary quantum mechanical harmonic
oscillator (overR with C-valued functions), except for the fact that the wavefunctiaw)
is defined only forx s.t. [x|, < 6. If we follow the physical interpretation of thg-adic
norm [10] of a physical quantityd as the inverse of the exactness of its measurement, i.e.
1
S(A) = — (39)
|Alp

then, the restriction on the domain of the wavefunction expresses the limitation of the
exactness of the measurement of the coordinate of a quantum pastiele> 1/6, (we
remark that this definition of(x) is not directly related to the definition of uncertainty in
ordinary quantum mechanics). Thus, in this interpretation it is not possible to measure the
position of a harmonic oscillator with an exactness which is better thégn 1

500> & = pmty [120h
2l

40
Op (40)
In a similar way, by performing @-adic Fourier transform, we obtain that we cannot
measure the momentum of the harmonic oscillator with an exactness which is better than

1/6,:
1

JV12mol,/Ifl,”

We note that the factor® has been used instead ¢Pein the integral representation (30)

of the Fourier transform in order to take into account the dimension of physical quantities.
In this interpretation we obtain that not only is there a minimum value for the product

of the precision of the measurements of position and momentum, but also, that there is a

minimal value to the precision with which we can measuredingle quantity position or

1 S
bp)= - =po? (41)
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1

1y

as ‘an exactness of measurement’ fgrthen by

momentum. If we interpret (k) =
(40) and (41) we have:

5()3(p) = pri8(h). (42)
These ‘inexactness relations’ obviously have some relation, but are not equivalent, with the
Heisenberg uncertainty relations.

Finally we make two remarks. First, the teqzm%1 approaches 1 whep — oo. Hence,
we obtain the inexactness relations

8(x)8(p) = 8(h) (43)
in the limit p — oco. We also note tha«/tll—}T can be very small as compared with

6. The p-adic description of the finite exactness of the measurement

The formalism of p-adic Hilbert space quantization and its corresponding physical
interpretation is described in [20]. Here we briefly summarize some essential parts of
this formalism.

We always use real numbers to describe measurement procedures both in classical and
guantum physics. This ‘real description’ has been used for a long time (at least since
Galilei’'s work). We are so used to this description that we are no longer surprised that in
this description we operate with physical quantities as if they could be measured with an
infinite exactness. A real number having an infinite number of decimal digits, the formalism
implies all these digits might be measured, at least in principle. However, from the practical
point of view every concrete experiment permits only a finite exactness of measurement.

Is it possible to include this finite exactness in a mathematical formalism? We shall see
how our p-adic formalism can be interpreted in this sense.

What can we obtain in a measuremei®t Let us choose the unit of a measurement to
be 1 and let us fix a natural number (corresponding to the scale of this measurement).
As results ofS we can obtain only quantities of the form

X_k

X_ )
x:i(—k+~~+—1+xo+~-+xsm5) (44)
m m

wherex; =0, 1,...,m — 1 are digits in our scale. Denote the set of all sucby Q,, fin.

Itis natural to taken% as a measurement of the ‘exactnessSofSince we can practically
only achieve a finite exactness & which we express by saying that there exists a fixed
numberk = k(S) such that the maximal achievable exactnesS if equal to5(S) = 1/m*.

This means that we can be sure only in the digif but the next digitx_ .1, is not well
defined inS (in this fixed scale).

We wish to create a number system which describes only finite exactness of
measurements. The set of ‘physical numbads; s, will be taken to be the basis of our
considerations.

First we are interested in the construction of the field of real numidrsn the
basis of Q,,1in. The field R is the completion ofQ,, sin with respect to the real metric
p(x,y) = |x — y| corresponding to the usual absolute value (valuatjorj) This metric
describes absolute values of physical quantities (with respect to the fixed coordinate system).
We define onQ,, fin @ Nnew valuation corresponding to the exactniss).

Set |x|,, = m* for x given by equation (44) (we assume thaty # 0); | - |, is a
pseudovaluation, in the sense that it has the following properties:

e |x|,, > 0and|x|, =0 iff x =0;
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o [yl < 1x LYl

o |x + yln < max(|x|., |¥l.) (the strong triangle inequality).

Setpn,(x, y) = |x — yl,» and completeQ,, rin With respect to this metric Denote this
complete metric space bQ,, (m-adic numbers). This is a ring with respect to extensions
of the usual operations of addition and multiplication.nif= p is a prime number, then
we obtain the field ofp-adic numbers),,.

Of course, from the mathematical point of view it would be better to work in a field
than in a ring. Therefore, in this paper we have studied quantum field modelsQgver
However, from the physical point of view it is better to use the general scheme on the basis
of m-adic numbers.

As in the p-adic case, for any € Q,, we have a unigue canonical expansion (convergent
in the| - |,,-norm ) of the form

X=X_n/m"+---x0+~--+kak+-~- (45)

wherex; = 0,1,...,m — 1, are the ‘digits’ of them-adic expansion. This expansion
contains only a finite number of digits corresponding to negative powers &/e interpret
these numbers as providing a description of the finite exactness of a measurement. However,
expansion (45) shows that there is a new element inmtkadic description which is not
present in the description of real numbers. There exists quantities described by (45) with
an infinite number of digits corresponding to positive powersnof It is very natural to
consider such quantities as infinite quantities (with respect to our fixed unit 1). At the
moment we are not sure whether such quantities might be useful in physics. However,
there is always the possibility of restricting our attention to finite quantitiesxiagescribed
by (45) withx; = O for all [ larger that some finité (depending orx).

Now the difference between real angdadic descriptions of measurement is clear. If
the exactness is infinite and the values of all observables are finite, then we have the real
numbers description. If the exactness is finite and some values of observables may be
infinite, then we have thei-adic numbers description.

Here m plays the role of a parameter characterizing the structure of the fixed scale.
Different scales are useful for different experiments. However, differeatlic descriptions
are equivalent from a practical point of view, for example the exactdeSs= 1/2* can
be realized approximately a&(S) = 1/3' for some suitabld. But at the same time the
rngs Q,, andQ,,, m # m’, are not isomorphic.

Now we consider the process of quantization. Further, we shall follow the so-called
statistical interpretation of quantum states.

Any measurement process has two steps:

(1) a preparation procedué&

(2) a measurement of a physical quantiiy,ys in the states which were prepared with
the aid of€.

According to the statistical interpretation, a quantum state represents an ensemble of
similarly prepared (with the aid &) systems. Typically a preparation procedéres based
on the filtration with respect to one of properties of a physical object. In particular, a
wavefunction describes the statistical distribution of this fixed property.

Let Apnys be the fixed physical quantity and a preparation procedusef, is realized
as the filter with respect to values dinys £4 generates statistical ensembles of statgs
corresponding to values of Apnys Further, usingy,, we can prepare mixed states where
Y, arises with a probability?,. It is important to note thai, = ¥, (E4).

T This is the so-called ultrametric, i.e. the strong triangle inequality y) < max(r(x, z), r(z, y)) holds.
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Now, consider the second step of a measurement process. There is thie staté,)
prepared by the preparation procedégeand a physical quantitBpnys. Values of Bpnys are
measured on the statistical ensemisle

The standard mathematical description of a measurement process uses as the space
of states a complex Hilbert spadé. States are normalized vectofs € H, physical
observablesBpnys are described by self-adjoint operators#i The expansion of with
respect to an orthogonal bagis, }:

Y= Z Cnén (46)

has a standard statistical interpretation (see, e.g. [13, 14]).

The dependencey = ¥ (€,4) does not play any role in thig{-description, in the
following sense. Suppose the stateis constructed with the aid ofiphys, ¥ = Y4 =
Y caaena (here the states,, correspond to the values, of Apnys). Then in principley
can be constructed with the aid of another physical quam{g%s, Y=y, = ciaena.
As ¥4 and ¥4 coincide as the elements @{, all physical properties ofy4 and 4
coincide.

However, it is not evident that if we measure the quanBiyys in the statey, we
obtain the same result as in the measurement on thegfatelespite the equality

Y =1a= ZCnAenA = Z Cotrnar = Ya (47)

in the complex Hilbert space (because this equality is a mathematical equality; in practice
it is realized as an approximation of one finite mixture by another (also finite) mixture; this
approximation may change the statistical behaviour crucially).

We shall now propose a formalism of quantization inpaadic Hilbert spacef,.

This formalism differs from the complex Hilbert space formalism. The main difference
is connected with the question about the equivalence of different representationg-of a
function. The mathematical structure of tf&,-formalism automatically generates non-
equivalent representations ofyafunction. Here the dependenge= v/ (£,) is essential.
Equality (47) does not imply that all physical properties of two statistical ensembies
and 4 coincide.

In the p-adic Hilbert space formalism we have to consider the exactness of a
measurement of values dfynys This exactness generates a metric on the space of states.
Following our general scheme (with the mathematical restrictiog; p is a prime number)
we choose the unit 1 and the prime numbewhich describes the scale of a measurement
process. LetA = {1} be values of a physical quantifyyn,s Suppose that these values are
measured with the exactnes$& nys) = 1/pf ke, ie.

A=Ay /pF+ o+ AP A =01...,p—1 (48)

This is an expression of the fact that we are sure of the digjt but not sure of the

next digitA_41). Using a preparation procedufe= £(Apnys, A), We construct the states
corresponding to the value$phys = A. Denote these states by the symbgis A € A.

Then it is possible to prepare statistical mixtures of these states. They are, by definition,
linear combinations of the; :

Y= chex” ¢, =a, +ib, a,, b, € 0. (49)
n=1
The spaceH;, of vectors (49) is complete with respect to a metric corresponding to the

exactness of a measurement of valuesigfys This completion is g-adic Hilbert space
H,. The main difference with the complex case is that the metric (consequently, the
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completion) depends 0Aynys, thus, depends omMphys. As in the complex formalism,
physical quantitiesBynys are realized by linear operatosin H,. However,, was built

on the basis of the finite exactness of a measurement,gk. It would be very naive to
hope that the},-formalism could predict exact values @&, We are able to predict
values of Bphys only with a fixed exactnes&(B) which is connected with the exactness of
a measurement odynys, §(A). We suppose that the values of an arbitrary physical quantity
Bpnys could be predicted only with the exactne®®8) = 1/||B|l, where| B| being the
operator norm ofB, if ||B| # 0 (the dependence oA is due to the dependence of the
p-adic Hilbert spacé, on the preparation procedure).

Thus, the main difference between the standard quantum formalism ang-ddée
formalism can be seen in the fact that the latter takes into account the finite exactness of
measurements of physical quantities. In quadic approach one has the possibility of
predicting the exactness of measurement of a physical quaiy which is described by
an operatorB in the p-adic Hilbert space (as the inverse to the normbyf This already
applies in the case whereis an eigenvalue oB, Be = Xe, i.e. in the p-adic approach
we cannot say that in the statethe physical quantity has exactly the valugwith the
probability 1); this value also can be measured only with the exacth@s= 1/| B||.

For example, thep-adic position and momentum can be interpretedisigal position and
momentum, but measured with a finite exactndssthis sense our formalism contains a
lesser idealization than the usual quantization based on complex numbers. Of course, as
in any mathematical formalism describing a physical model, our theory also contains some
ideal elements for which seem to be impossible to verify in an experiment. These are infinite
guantities which are described pyadic numbers having an infinite number of digits in the
canonical expansions.

The idea of using a finite exactness of measurements to modify the present quantum
formalism has been expressed before, for example by Prugovecki [21-23] which contains an
analysis of the role of exactness of individual measurements in quantum theory. However,
Prugovecki tried to describe a finite exactness of measurements by real numbers, giving the
main attention to a finite exactness of measurement for incompatible observables described
by non-commuting operators. From our point of view this problem is already very important
in the case of a single physical quantity. Another approach based on a finite exactness of
measurement was developed in the framework of so-called positively defined operator-
valued measures (see Davies [24], Ludwig [25], Holevo [26]).

The probability interpretation of quantum states in ghedic quantum formalism is
similar to the standard one. However, there are some differences concerning the presence
in a p-adic Hilbert space of quantum states which do not have the standard probability
interpretation in the framework of the Kolmogorov axiomatics [27].

We start from the consideration of quantum states which permit a standard statistical
interpretation. Suppose that the physical quanBty,s is described by the symmetric
operatorB in the p-adic Hilbert space. Let, be the system of eigenvectors Bf: Be, =
rnen. We consider the finite mixture of this vectors with rational coefficients:

N
Y=Y crex a €Q (50)
=1

satisfying to the normalization conditiopy_,c? = 1. Then, as in the usual quantum
formalism, we predict that the physical quantiBgnys yields in the quantum stat¢ the
value,, with probability c2. The same probability interpretation can be used for mixtures
with coefficientsc, = ay + iby, ax, by € Q. In fact, this is a large class of quantum states
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(it might even be reasonable to assume that all quantum states, which may be prepared by
some physical preparation procedure, have the form (50)).

However, ap-adic Hilbert space also contains quantum states which do not permit the
standard statistical interpretation. In particular, these are finite mixtures of eigenvectors
with non-rational p-adic coefficients. We propose using, for such states, the probability
interpretation based on the so-callgeadic probability theory, see [1, 3, 28, 29] (which is
based on a generalization of the frequency approach of Mises [30, 31], corrected by further
developments of Kolmogorov, Martin-Lof, Chaitin and others).

In this probability formalism probabilities are defined as limits of relative frequencies,
but these limits are considered with respect to phadic topology on the field of rational
numbersQ. It is evident that all relative frequencies are rational numbers; thus their
asymptotics can be studied, not only in the standard real metrig, drut also in any metric
(or more generally topology) o and, in particular, in one of the-adic topologies.

In [1,3,28,29] we presented an extended clasgp@fdic random sequences which did

not have the property of the statistical stabilization with respect to the real metric (the
relative frequencies oscillate with respect to the real metric, but they stabilize with respect
to the p-adic metric). Furtherp-adic frequency probability theory was reformulated by
using the measure-theoretical approach [28, 29] wheaglic probabilities were defined as
normalizedQ,-valued measures. The properties pfadic frequency probabilities were
used to formulate the corresponding system of axioms. One of the interesting properties
of p-adic probabilities is the possibility of realizing negative rational humberg-asic
probabilities [28, 29].

Therefore our p-adic Hilbert space quantum formalism implies the existence of
generalized quantum states with unusual statistical behaviour. This statistical behaviour
is totally chaotic from the point of view of the standard probability theory, although it is
well described byp-adic probability distributions (see [32—35]). The crucial point of these
investigations is the possibility to consider negative probability distributions as well defined
mathematical objects in the framework of tpeadic probability theory. In particular, this
gives us the possibility to proposepaadic probability description of the Einstein—Podolsky—
Rosen paradox (see [36, 37]).

We can also interpret the use pfadic (orm-adic) numbers as a way of inducing a
fundamental length in quantum physics theory. Let us consigeadic space-time model:

My = Uy, x Uy, x Uy, x Uy,

wherel,, l,,l,, [, have the formp*, k = 0, £1, .... In this discrete space-time, [, /..,
are the minimal lengths for space and time intervals. It is evident thgi-hdic space-time
M, is an additive group. We can define the analogue of Lorentz transformatiol.in
We plan to study this model (in particular, the Lorentz invariance-aidic quantum fields
model) in subsequent papers.

We have presented (one of the possible) interpretatiopsaafic quantum models. What
about the classical limit op-adic quantum models? We expect that by using the calculus of
pseudodifferential operators [1] we can study the relations between quantum and classical
models onp-adics.

Acknowledgments

We would like to thank G Mauceri for a fruitful discussion on the possibility of defining the
Fourier transform fop-adic valued functions op-adics. AK would like to thank G Parisi
for fruitful discussions on foundations gf-adic quantum mechanics and hospitality, and



On the Fourier transform and the spectral properties 5783

the Physics Department of the University of Rome (‘La Sapienza’) for financial support.
Stimulating remarks by the referees are also gratefully acknowledged. This work was
carried out under the auspices of the GNFM of CNR and under the research programme
Metodi geometrici in Relativit e Teoria dei campi of MURST. This research was due to an
Alexander von Humboldt Fellowship and a visiting professor fellowship at the University
of Genova supported by the Italian National Research Council.

References

[1] Khrennikov A Yu 1994p-adic Valued Distributions in Mathematical Physi@ordrecht: Kluwer Academic)
[2] Vladimirov V S and Volovid | V 1989 p-adic quantum mechanié&Gommun. Math. Phyd.23 659-69
[3] Cianci R and Khrennikov A Yu 1994 Cap-adic numbers be useful to regularize divergent expectation
values of quantum observables®. J. Theor. Phys18 1217-28
[4] Cianci R and Khrennikov A 1994 Poisson bracket as the Adelic limit of quantum commuthtBisys. A:
Math. Gen.27 7875-85
[5] Vladimirov V' S, Volovich | V and Zeleno E | 1994 p-adic Numbers in Mathematical Physi¢Singapore:
World Scientific)
[6] Freurd P G O,Olson M and Witten E 1987 Adelic string amplitudesys. Lett.199B 191-5
[7] Manin Yu 1985 New dimensions in geometrgct. Notes Math111159-101
[8] Manin Yu 1989 Reflections on arithmetic physi€®nformal Invariance and String Theogd P Dita and
V Georgescu (Boston, MA: Academic) pp 293-302
[9] Albeverio S and Khrennikov A Yu 1996 Representation of the Weyl group in spaces of square integrable
functions with respect tg-adic valued Gaussian distributiodsPhys. A: Math. Gen29 5515-27
[10] Albeverio S, Cianci R and Khrennikov A 1997 On the spectrum of gkedic position operatod. Phys. A:
Math. Gen.30 881-9
[11] de Broglie L 1964The Current Interpretation of Wave Mechanics. A Critical St@8lsnsterdam: Elsevier)
[12] de Broglie L 1953La Physique Quantique Restera-t-elle Inefetiniste(Paris: Gauthier-Villars)
[13] Ballentire L E 1989Quantum MechanicéEnglewood Cliffs, NJ: Prentice-Hall)
[14] Ballentire L E 1970 The statistic interpretation of quantum mechaRies. Mod. Phys.42 358
[15] Amice Y 1975 Les nombreg-adiques, PUF
[16] Amice Y and Escassut A 1975 Sur la non injecéuvite la transformation de Fourier relati&eZ, C. R. Acad.
Sci., ParisA 278583-5
[17] Escassut A 199Bnalytic Elements ip-adic Analysis(Singapore: World Scientific)
[18] Schikhof W 1984 Ultrametric Calculus (Cambridge Studies in Adv. Math. @ambridge: Cambridge
University Press)
[19] Albeverio S and Khrennikov A Yu 1996-adic Hilbert space representation of quantum systems with an
infinite number of degrees of freedomt. J. Mod. PhysB 10 1665-73
[20] Khrennikov A 1996 The ultrametric Hilbert space description of quantum measurements with a finite
exactnes$-ound. Phys26 1033-54
[21] Prugovecki E 1966 An axiomatic approach to the formalism of quantum mechanicdVath. Phys.7
1054-69
[22] Prugovecki E 1967 On a theory of measurement of incompatible observables in quantum meChanits
Phys.452173-219
[23] Prugovecki E 1973 Simultaneous measurement of several observatled. Phys3 3-18
[24] Davies E B 1976Quantum Theory of Open Systethendon: Academic)
[25] Ludwig G 1983Foundations of Quantum MechaniBerlin: Springer)
[26] Holevo A S 1982Probabilistic and Statistical Aspects of Quantum The@ynsterdam: North-Holland)
[27] Kolmogorosr A N 1956 Foundations of the Probability TheofNew York: Chelsea)
[28] Khrennikov A Yu 1995 An extension of the frequency approach of R von Mises and the axiomatic approach
of N A Kolmogorov to thep-adic theory of probabilityTheor. Prob. Appl40 458—-63
[29] Khrennikov A Yu 1995 Statistical interpretation pfadic quantum theories with-adic valued wave functions
J. Math. Phys36 6625-32
[30] Mises R 1957Probability, Statistics and TrutfLondon: Macmillan)
[31] Mises R 1964The Mathematical Theory of Probability and Statist{t®ndon: Academic)
[32] Khrennikov A Yu 1995p-adic probability interpretation of Bell's inequality paradoXebys. Lett.A 200
119-223



5784 S Albeverio et al

[33] Khrennikov A Yu 1993 p-adic theory of probability and its applications. A principle of the statistical
stabilization of frequencie¥eor. Mat. Fiz.97 348-63

[34] Khrennikov A Yu 1995p-adic probability distribution of hidden variablé®hysica215A 577-87

[35] Khrennikov A Yu 1995p-adic probability description of Dirac’s hypothetical wotlidt. J. Theor. Phys34
2423-34

[36] Feynma R P 1987 Negative probabilitpuantum Implications Essays in Honour of David BobdnB J Hiley
and F D Peat (London: Routledge) p 235

[37] Muckenheim W 1986 A review on extended probabilitisys. Rep133 338—401



