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Abstract. A momentum representation forp-adic quantum mechanics is constructed. It uses
a Fourier transform in theL2-space with respect to thep-adic Lebesgue distribution and a study
of its properties. The momentum representation is used to investigate the spectral properties of
the p-adic momentum operator and to study the (p-adic valued) Schr̈odinger equation for the
p-adic harmonic oscillator.

1. Introduction

In this paper we continue our investigations on spectral properties of quantum operators
realized in ap-adic Hilbert space (see, for example [1–4] for the quantization in thep-adic
Hilbert space and [5–8] forp-adic mathematical physics). In particular, we study ap-adic
Hilbert space representation of the canonical commutation relation:

[x̂, p̂] = iI. (1)

In [9] it was shown that one can realize the position and momentum operatorsx̂ and p̂
as bounded symmetric operators in thep-adic Hilbert space. Then, in [10] we studied the
spectral properties of the position operatorx̂ in the L2-space with respect to thep-adic
Gaussian distribution [1]. There is a large difference from the standard representation of
the position operator in a complex (separable) Hilbert space. The spectrum of thep-adic
position operator is concentrated in a ball of finite radius. The radius of this ball depends
on the covarianceb of thep-adic Gaussian distribution. We remark that, in thep-adic case,
non-equivalent Gaussian distributions exist and, consequently, non-isomorphicL2-spaces
with respect to these distributions. We can interpret this choice of the covarianceb, as a
fixing of the exactness of the position measurement. This can be seen as a realization of an
old idea in the discussion of foundations of quantum mechanics that one should take care
of physical equipment in the discussion of the structure of the space of quantum states. In
our framework the fixing of equipment implies the fixing of an exactness for measurement,
expressed in terms of ap-adic representation.

In this paper we study the spectral properties of thep-adic momentum operator̂p. To
do this, we construct thep-adic momentum representation using an analogue of the usual
Fourier transform. From the physical point of view, the most interesting result is that, in
general, the spaces of quantum states of position and momentum do not coincide.

§ On leave from Moscow Institute of Electronic Engineering.
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This is not so strange from the experimental point of view; in fact, different preparation
proceduresE (e.g. those corresponding to given values of the positions and the momentum
respectively) may produce different quantum states. For example, if we prepare a quantum
stateφ using a preparation procedureEpos based on a position filter (i.e. we can formally write
φ = φ(Epos)), then from the experimental point of view it is not evident that we may prepare
the same stateφ by using some preparation procedureEmom based on a momentum filter.
However, if the standard formalism of quantum mechanics is used, then applying the Fourier
transform we can change the representation and (in general, only theoretically) realize each
quantum stateφ = φ(Epos) (the position representation) as the stateφ = φ(Emom) (the
momentum representation). More generally, if{en} and {e′n} are two different orthonormal
bases in the complex Hilbert space, then the operator of the change of coordinates from the
base{en} whereφ =∑∞n=0 φnen to the base{e′n} whereφ =∑∞n=0 φ

′
ne
′
n is a unitary operator.

Therefore, a change of coordinates does not change the physical properties, i.e. physical
properties of the stateφ realized asφ = ∑∞

n=0 φnen coincide with physical properties of
the state (which is denoted in the standard formalism of quantum mechanics by the same
symbolφ) realized asφ = ∑∞n=0 φ

′
ne
′
n. Thus from the point of view of ordinary quantum

mechanics there is no difference to prepare the quantum stateφ as a mixture of states{en}
(for example, corresponding to the position preparation procedureEpos, say for a particle
in a box) or as a mixture of states{e′n} (for example, corresponding to the momentum
preparation procedureEpos for a particle in a box). The situation is crucially changed in the
formalism ofp-adic quantum mechanics. In thep-adic Hilbert space an operator of a change
of coordinates between two orthonormal bases, in general, does not preserve the norm.
From the physical point of view this means that a change of representation may change
physical properties (in fact, the exactness of a measurement) of the system. For this reason
we really need to use the indexes ‘pos’ and ‘mom’ for quantum states to indicate which
representation is used (how these quantum states were prepared). The equivalence of the
different representation in the standard mathematical formalism of quantum mechanics was
not accepted by everybody: for example, de Broglie [11, 12] gave a strong motivation for the
position representation to be the only ‘real physical representation’, all other representations
being then only consequences of the position representation. According to de Broglie, we
can reconstruct all properties of the momentum representation on the basis of the position
representation, but we cannot reconstruct the position representation on the basis of the
momentum representation. The mathematical equivalence of these representations was
considered by de Broglie as a mathematical trick. We do not, however, directly follow
de Broglie: in ourp-adic quantum mechanics the position and momentum representations
appear in a symmetric way. Nevertheless, they give rise to different spaces of quantum
states (see also Ballentine [13, 14] on the connection between a preparation procedure and
the space of quantum states).

From the mathematical point of view, our theory of thep-adic Fourier transform (for
p-adic valued functions on thep-adic space) also differs very much from the well known
Fourier transform theory onp-adic space, see [15–17]. The most important difference is that
our definition of the Fourier operator gives rise to a unitary isometric operator between two
p-adic Hilbert spaces, whereas the standard Fourier transform forp-adic valued functions
on thep-adic space [15–17] has a non-trivial kernel.

Using the momentum representation and the results of [10] on the spectral properties of
the position operator in our approach top-adic quantum mechanics, we shall give results
on the spectrum of thep-adic momentum operator̂p.

In section 5 we shall study the Schrödinger equation for a harmonic oscillator:
the statistical interpretation and an analogue of the Heisenberg uncertainty principle are
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discussed in details. In section 6 we shall present results on thep-adic description of finite
exactness of measurements.

2. The p-adicL2-space with respect to Gaussian and Lebesgue distributions

The field ofp-adic numbers is denoted by the symbolQp. As usual, we definep-adic balls
Ur(a) = {x ∈ Qp : |x − a|p 6 r}, a ∈ Qp, r > 0. SetUr = Ur(0). Denote the field of
complexp-adic numbers (the completion of the algebraic closure ofQp) by the symbolCp.
We shall use this field to define the rootsb1/2 andb1/4 for the elementsb ∈ Qp.

As in our previous paper [10], we consider the casep = 3 mod 4.
Let b 6= 0 be ap-adic number, thep-adic Gaussian distribution (with covarianceb) νb

is defined as aQp-linear functional (on the space ofp-adic valued polynomials overQp)
by its moments

M2n =
∫
x2nνb(dx) = (2n)! b

n

n!2n
M2n+1 =

∫
x2n+1νb(dx) = 0 n ∈ N0

with N0 = {0}∪N. Then this integral is extended by linearity and continuity to some classes
of analytic functions.

Formally (by analogy with the real case), we can writeνb as

νb(dx) = e−
x2

2b dx (2)

(with dx being a ‘suitably normalized’ Lebesgue measure).
However, this is only a symbolic expression. It does not have a strict mathematical

sense, because there is nop-adic valued analogue of the Lebesgue measure. Moreover,
further we shall introduce (see (21) below) ap-adic Lebesgue distribution on the basis of
the Gaussian one.

Let us introduce the analogue of Hermite polynomials onQp corresponding to thep-adic
Gaussian distribution with the covarianceb:

Hn,b(x) = n!

bn

[n/2]∑
k=0

(−1)kxn−2kbk

k!(n− 2k)!2k
x ∈ Qp. (3)

These polynomials are orthogonal with respect to thep-adic Gaussian measureνb. We shall
also use the following representation for these Hermitian polynomials:

Hn,b(x) = (−1)nex
2/2b dn

dxn
e−x

2/2b. (4)

This representation holds on any ball of sufficiently small radius with its centre in zero (see
[9] for details).

Let p = 3, mod 4, then the equationx2+1= 0 has no solutions inQp. We can consider
the quadratic extensionQp(i) with i = √−1 of Qp. In analogy with complex numbers we
set z = x + iy, x, y ∈ Qp, i = √−1, and z̄ = x − iy. The valuation onQp(i) is also
denoted by| · |p, |z|p =

√||z|2|p, where|z|2 = zz̄ = x2+ y2. We remark that|z|2 assumes
its values in the fieldQp, whereas|z|p assumes its values in the field of real numbers.

In previous papers [9, 10] we gave the following definition of theL2 space with respect
to thep-adic Gaussian distribution. The spaceL2(Qp, νb) of p-adic valued functions of a
p-adic argument is the set{
f (x) =

∞∑
n=0

fnHn,b(x), fn ∈ Qp(i) : the series
∞∑
n=0

|fn|2n!/bn converges inQp
}
.
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Remark. If p 6= 3,mod 4, then i∈ Qp. Thus no quadratic extension with respect to i is
possible. The realization of quantum mechanical objects then becomes more complicated.

The requirement as above for functions to belong toL2(Qp, νb) is equivalent to the
requirement that

σ 2
n,b(f ) ≡

|fn|2p|n!|p
|b|np

→ 0 whenn→∞. (5)

The norm and the inner product inL2(Qp, νb) are defined by the equalities:

‖f ‖ = max
n
σn,b(f ) (6)

respectively

(f, g) =
∫
f (x)g(x)νb(dx). (7)

If we choose a different parameterb, we obtain, in general, a differentL2(Qp, νb)
space; the next theorem investigates the relation between theseL2 spaces. First, we give
the following lemma.

Lemma 2.1.For anyb, c ∈ Qp, b 6= 0, we have:∫
Hs,b(x)νc(dx) = (2l)!(c − b)l

l!2lb2l
(8)

if s is even and we have sets = 2l; the integral is zero ifs is odd; the integral is equal 1
if b = c ands = 0.

Proof. First, we remark that we can restrict our considerations to the caseb 6= c, because
if b = c and s 6= 0, then both sides of lemma 2.1 are equal to zero (it is also evident that
if b = c ands = 0, then the integral is equal to 1). We have∫

Hs,b(x)νc(dx) =
∫
(−1)se

x2

2b

(
ds

dxs
e−

x2

2b

)
νc(dx)

= (−i/b)s
(

e
−y2

2b

∫
e
x2

2b
ds

dys
e−

(x−iyb)2

2b νc(dx)

)
|y=0

= (−i/b)s
(

e
−y2

2b
ds

dys
e
y2b

2

∫
eixyνc(dx)

)
|y=0

= (i/b)se− y2c
2 e

y2

2η
ds

dys
e−

y2

2η |y=0 = (i/b)se−
y2c

2 Hs,η(y)|y=0

= (i/b)sHs,η(0) (9)

whereη = 1
c−b . Now, by using the expression

Hs,η(0) = (−1)l(2l)!η−l

l!2l

we obtain the proof. �

Remark. The exponential function eixy does not belong to theL2-space (for any value
of the parametery). However, the integralJ (y) = ∫ eixyνc(dx) (the Fourier transform of
the Gaussian distribution) is well defined for the sufficiently small|y|p, because Gaussian
integrals are defined for all functions which are analytic on the ballUτ , τ > θc =
p1/2(1−p)√|c|p, see [10].
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Remark. In the above proof we have changed the order of integration and differentiation.
In fact to justify this procedure, we have to prove that:∫

d

dy
e
by2

2 +ixyνc(dx) = d

dy

∫
e
by2

2 +ixyνc(dx).

As all exponential series converge as geometric progressions for small|y|p, we can reduce
this problem to the evident equality for the monomials:∫

d

dy
ymxkνc(dx) = d

dy

∫
ymxkνc(dx).

We shall use the equality

|n!|p = p(n−Sn)/(1−p) (10)

wheren = ∑j njp
j , nj = 0, 1, . . . , p − 1, is ap-adic expansion of the natural numbern

andSn =
∑
j nj [18]. Moreover, we shall use the following lemma.

Lemma 2.2.Sj+k 6 Sj + Sk [10].

Theorem 2.1.If the p-adic numbersb andc verify the relation|c|p 6 |b|p, then

L2(Qp, νb) ⊆ L2(Qp, νc). (11)

Proof. Let f ∈ L2(Qp, νb) and write

f (x) =
∑
n

fnHn,b(x)

whereσ 2
n,b(f )→ 0 whenn→∞.

Now we can expandf in the form

f (x) =
∑
n

f̃nHn,c(x) (12)

where

f̃n = cn

n!

∫
f (x)Hn,c(x)νc(dx). (13)

At this moment this is only a formal expansion. We shall prove that this series converges
in L2(Qp, νc).

Expression (13) can be rewritten in the following form by using standard properties of
integration by parts of the Gaussian distribution [1, pp 40–1]:

f̃n = cn

n!

∞∑
m=n

fm
m!

(m− n)! bn
∫
Hm−n,b(x)νc(dx).

Now, by using lemma 2.1, we obtain

f̃n = cn

bnn!

∞∑
l=0

fn+2l
(n+ 2l)!(c − b)l

b2l l!2l

and we estimate

σ 2
n,c(f ) 6

|c|2np
|n!|p|c|np|b|2np

max
l=0...∞

[
σn+2l,b(f )

2|(n+ 2l)!|p
|b|n+2l

p |c − b|2lp
|l!|2p|4|lp|b|4lp

]

=
∣∣∣ c
b

∣∣∣n max
l=0...∞

[
σn+2l,b(f )

2

∣∣∣∣c − bb
∣∣∣∣2l p Sn+2l−2Sl−Sn

p−1

]
. (14)
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By using lemma 2.2 and the fact thatf ∈ L2(Qp, νb), we obtain thatσ 2
n,c(f ) approaches

0 if the following relations hold:∣∣∣∣c − bb
∣∣∣∣ 6 1 (15)∣∣∣ c

b

∣∣∣ 6 1. (16)

Since relation (15) is a consequence of (16), we obtain the proof. �

A consequence is the following.

Theorem 2.2.If the p-adic numbersc, b have the samep-adic norms, then the spaces
L2(Qp, νb) andL2(Qp, νc) coincide. However, the canonical inclusion (12), (13) is not the
isomorphism ofp-adic Hilbert spaces.

There are difficulties in directly defining the Fourier transform of maps inL2(Qp, νb),
since the maps, which arep-adic analogues of the Hermite functions, are not elements of
L2(Qp, νb). In fact, they are defined by

φn,b(x) = b−1/4Hn,b(x)e
− x2

4b . (17)

The power expansion e−
x2

4b is pointwise convergent only for|x|p < θ where the constantθ
was already defined in [10]

θ ≡ θb = p
1

2(1−p)
√|b|p. (18)

In the following, we shall consider more than one covariance, and we shall add a suffix to
θ to clarify the parameter on which it is depending on.

We remark that by computing the Hermitian coefficients of e− x2

4b , we can easily show

that e−
x2

4b does not belong toL2(Qp, νb).
For this reason we shall consider a different functional space, which we shall show to

be isomorphic toL2(Qp, νb).

Definition 2.1.L(b)2 (Qp, dx) is the set{
f (x) =

∞∑
n=0

fnφn,b(x), fn ∈ Qp(i) : the series
∞∑
n=0

|fn|2n!/bn converges inQp
}
.

Remark. The mapsf are defined only for|x|p < θ .
OnL(b)2 (Qp, dx) we define the norm‖·‖ and the inner product(·, ·). If f ∈ L(b)2 (Qp, dx)

we define‖f ‖2 = maxn σ 2
n,b(f ). Furthermore, ifu, v ∈ L(b)2 (Qp, dx), we define

(u, v) =
∑

unvn
n!

bn
. (19)

In the next theorem we state that the spaceL
(b)

2 (Qp, dx) is isomorphic toL2(Qp, νb).
If f ∈ L(b)2 (Qp, dx), we setf (x) = ∑

fnφn,b(x) and defineU(f )(x) = ∑
fnHn,b(x) ∈

L2(Qp, νb).

Theorem 2.3.The mapU is an isomorphism (i.e. a unitary and isometric map) between the
two p-adic Hilbert spaces,L(b)2 (Qp, dx) andL2(Qp, νb).
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The reader can easily show thatU preserves the norm and the inner product:

(f, g) = (U−1(f ), U−1(g)). (20)

By using our Gaussian distributionνb, we can define a Lebesgue integral forp-adic

valued functionsf of the formf (x) = φ(x)e−x2

2b /
√
b, |x|p < θ , whereφ(x) is integrable

with respect to the Gaussian distribution†:∫
f (x) dx =

∫
φ(x)νb(dx). (21)

By using this integral, the scalar product just defined admits the following integral
representation:

(u, v) =
∫
u(x)v(x) dx. (22)

Finally, by using theorems 2.2 and 2.3, we easily obtain the following.

Corollary 2.1. If the p-adic numbersb, c verify |b|p = |c|p, then the spacesL(b)2 (Qp, dx)
andL(c)2 (Qp, dx) are isomorphic as Banach spaces.

3. Fourier transform of L2 maps

Recalling the role played by Hermite functions in the classical harmonic analysis, we define
the Fourier transform as a map of ap-adic L2-space into anotherp-adic L2-space, as
follows.

Definition 3.1.The continuous linear mapF : L(b)2 (Qp, dx) → L
(c)

2 (Qp, dx) for c = 1
4b

defined as

F(φn,b(x)) =
(

i

2b

)n
φn,c(x) (23)

is said to be the Fourier transform between thep-adic L(b)2 (Qp, dx)-space and thep-adic
L
(c)

2 (Qp, dx)-space.

In this section, we shall always assume thatc = 1
4b .

The main theorem is the following one.

Theorem 3.1.The Fourier transformF is an isomorphism between thep-adic Hilbert spaces
L
(b)

2 (Qp, dx), L(c)2 (Qp, dx) in the sense that it is a linear bijective map fromL(b)2 (Qp, dx)
ontoL(c)2 (Qp, dx) which preserves the norm and the inner product.

Proof. First, we show thatF sendsf ∈ L(b)2 (Qp, dx) into F(f ) ∈ L(c)2 (Qp, dx). Write
f =∑ fnφn,b and computeF(f ) =∑n gnφn,c wheregn = fn(i/2b)n; since

σ 2
n,c(g) = σ 2

n,b(f ) (24)

we see thatF(f ) indeed belongs toL(c)2 (Qp, dx).
Further we have

‖Ff ‖2 =
∥∥∥∥∑ fn

(
i

2b

)n
φn,c

∥∥∥∥2

= max
n

∣∣∣∣fn ( i

2b

)n∣∣∣∣2 |n!|p
|c|np
= ‖f ‖2. (25)

† In the real case we also have the normalization constant
√

2π . It would probably be useful to do the same in
thep-adic case. However, at the moment it is not clear what ap-adic analogue ofπ is.
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Similarly, for the scalar product, ifu, v ∈ L(b)2 (Qp, dx)

(u, v) =
∑

unv̄n
n!

bn
. (26)

On the other hand, we obtain

(F(u),F(v)) =
∑
n

un

(
i

2b

)n
v̄n

(−i

2b

)n
n!

cn
= (u, v). (27)

Now we show thatF admits an inverse mapF−1. Let g ∈ L(c)2 (Qp, dx), g =∑ gnφn,c.
We set

Gg =
∑

gn(−2ib)nφn,b. (28)

By the same reasons as above, the mapG sendsg ∈ L(c)2 (Qp, dx) into a mapG(g) ∈
L
(b)

2 (Qp, dx) and preserves the norm and the inner product.
Now let g ∈ L(c)2 (Qp, dx), g =∑ gnφn,c, be the Fourier transform off ∈ L(b)2 (Qp, dx).

We have:

G(g) =
∑

fn

(
i

2b

)n
(−2ib)nφn,b = f.

This proves thatG = F−1. �

Now we wish to relate our definition of the Fourier transform to a more usual integral
form. However, to obtain the integral representation for the Fourier transform, we have
to extend thep-adic Gaussian (and consequently Lebesgue) integrals. We start from the
Gaussian integral. In [10] the Gaussian integral was defined for the following class of
analytic functions.

Denote the space of analytic functionsf : Ur → Qp by the symbolA(Ur). Let
b ∈ Qp, b 6= 0. Then the Gaussian integral∫

f (x)νb(dx) =
∞∑
n=0

1

(2n)!

d2n

dx2n
f (0)

∫
x2nνb(dx) =

∞∑
n=0

bn

n!2n
d2n

dx2n
f (0)

is well defined for eachf ∈ A(Uτ ), τ > θb where the constantθb is defined by (18). Set
Ia(Qp, νb) = ∪τ>θbA(Uτ ). We shall essentially extend this class of functions integrable
with respect to the Gaussian distributionνb.

Lemma 3.1.Let b, d ∈ Qp, b, d 6= 0. Then the function e−x
2/2d belongs to the class

Ia(Qp, νb) iff |b|p < |d|p.

Theorem 3.2.Let f ∈ Ia(Qp, νb) and |b|p < |d|p. Then∫
f (x)e−x

2/2dνb(dx) =
√
t/b

∫
f (x)νt (dx) t ≡ tb,d = bd/(b + d). (29)

Proof. First we prove that the Gaussian integrals in (29) are well defined. Asf (x) and
e−x

2/2d belong to the classIa(Qp, νb), these functions belong to the classA(Uτ ) for some
τ > θb. However,A(Uτ ) is an algebra with respect to the usual multiplication of functions.
Thus, the Gaussian integral on the left-hand side of (29) is defined. Further we have
t = b/(1+ b/d); but |1+ b/d|p = 1, i.e. |t |p = |b|p. Henceθb = θt and consequently
Ia(Qp, νt ) = Ia(Qp, νb), i.e. the Gaussian integral on the right-hand side of (29) is defined.
As both Gaussian integrals are defined by the term integration of power series, it is sufficient
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to consider the case of monomial functionsf (x) = xn, n = 0, 1, 2, . . .. We illustrate the
proof by considering the casef ≡ 1:

A =
∫

e−x
2/2dνb(dx) =

∞∑
k=0

(−1)k(2k)!bk

(2d)k(k!)22k
.

On the other hand, we have:√
t/b = (1+ b/d)−1/2 =

∞∑
k=0

(b/d)k
(−1)k(2k)!

(k!)222k
= A.

There we have used the binomial expansion inQp (in fact it is important thatp 6= 2,
i.e. | 12|p = 1, see [17, 18]). In the general case,f (x) = xn, the proof is little bit more
complicated but it is also based on the elementary calculations with the power series.

We now use equality (29) to extend thep-adic Gaussian integral. Letb, d 6= 0, b 6= −d;
let f ∈ Ia(Qp, νt ), t = tb,d . Then the integral of the functiongd(x) = f (x)e−x2/2d with
respect to the Gaussian distributionνb is defined by equality (29).

On the basis of this generalized Gaussian integral we extend thep-adic Lebesgue integral
(by (21)).

Theorem 3.3.Let |x|p < θb, |y|p < θc (hereθb, θc denote the usual parameterθ with respect
to the covariancesb, c respectively), then the following relation holds:

F(φn,b)(y) =
∫
φn,b(x)e

ixy dx. (30)

Proof. We have:∫
φn,b(x)e

ixy dx = b −1
4

∫
Hn,b(x)e

−x2

4b eixy dx = b 1
4

∫
e
x2

4b +ixyHn,b(x)νb(dx)

= (−1)nb
1
4

∫
e
x2

4b +ixy dn

dxn
νb(dx) = b 1

4

∫
dn

dxn
(e

x2

4b +ixy)νb(dx)

= b 1
4 eby

2
∫

dn

dxn
e

1
4b (x+2iby)2νb(dx)

=
(

1

2bi

)n
b

1
4 eby

2 dn

dyn

(
e−by

2
∫

e
x2

4b +ixy)νb(dx)

)
=
(

1

2bi

)n
b

1
4 2

1
2 eby

2 dn

dyn

(
e−by

2
∫

eixyν2b(dx)

)
=
(

1

2bi

)n
b

1
4 2

1
2 eby

2 dn

dyn
e−2by2 =

(
i

2b

)n
(−1)nc

−1
4 e

y2

4c
dn

dyn
e−

y2

2c

=
(

i

2b

)n
φn,c(x)

where, as usual,b = 1/4c. We have used the generalized Gaussian integral ford = −2b,
i.e. tb,d = 2b. �

Now we wish to prove the main properties of the Fourier transform.

Theorem 3.4.Assume that all the variables are in their convergence regions: we have

dk

dxk
Ff = ikF(ykf ) F dk

dxk
f = (−iy)kFf. (31)
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Proof. First we remark that allL2-functions are infinitely differential and their derivatives
belong to the sameL2-space (see [9]).

We only prove the first statement fork = 1, the other statements being obtained in a
similar way. We observe that

d

dx
(Ff )(x) =

∑
fn

(
i

2b

)n d

dx
φn,c(x) = −1

2

∑
fn

(
i

2b

)n [
φn+1,c(x)− n

c
φn−1,c(x)

]
.

(32)

On the other hand, we compute

F(yf )(y) = F
∑

fnyφn,b(y) =
∑

fnF [bφn+1,b(y)+ nφn−1,b(x)]

= i/2
∑

fn

(
i

2b

)n
[φn+1,c(x)− n

c
φn−1,c(x)] (33)

which proves (31) (in the casek = 1).
Formally we define the convolution of two mapsf, g as

(f ? g)(z) =
∫
f (x)g(z − x) dx (34)

(also here we suppose|x|p, |z|p < θ ). However, in general the convolution of twoL2-
functions does not belong to theL2-space. In fact, there the situation is more ‘pathological’
than in the real case. By direct computations we can prove that the convolution of two
Hermitian functions,f = φ0,b andg = φ1,b, does not belong to theL2-space. Therefore, it
is not clear on what domain the standard equality:F(f ? g) = Ff Fg can be considered
to be valid. �

4. The spectrum of the momentum operator

In this section we study the momentum representation by using the properties of the Fourier
transform. We consider the case of a particle moving in one dimension (the extension to
the d-dimensional case being immediate).

If f ∈ L(b)2 (Qp, dx) we define the momentum operator by

p̂f (x) = −i
d

dx
f (x). (35)

Now applying the Fourier transform we have

F p̂f (x) = xFf = x̂Ff
so, we obtain that the spectrum of the momentum operator inL

(b)

2 (Qp, dx) coincides with
spectrum of the position operator inL(c)2 (Qp, dx), where, as before,c = 1/4b.

In [10] we studied the spectral properties of the position operator in the space
L2(Qp, νb); since the spacesL2(Qp, νb) andL(b)2 (Qp, dx) are isomorphic, we obtain the
following theorem.

Theorem 4.1.Let |λ|p < θc. Thenλ belongs to the spectrum of the momentum operator
p̂. The point spectrum of the momentum operatorp̂ : L(b)2 (Qp, dx)→ L

(b)

2 (Qp, dx) is the
empty set.
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5. Exactness of the measurement for the position and momentum of a harmonic
oscillator

In this section we briefly consider the Schrödinger equation for a harmonic oscillator on
Qp, i.e.

− h̄2

2m

d2

dx2
ψ(x)+ 1

2
mω2x2ψ(x) = Eψ(x) x ∈ Qp (36)

with ψ ∈ L(b)2 (Qp, dx), h̄, m, ω,E ∈ Qp.

Remark. In our approach we consider the Planck constant ¯h, the frequencyω and the mass
m of the harmonic oscillator as measured with a finite exactness. Thus, in equation (36)
the numbers ¯h, ω,m have the form

a = a−np−n + · · · + a0+ · · · + ampm (37)

with the digitsaj = 0, 1, . . . , p − 1. Here an exactness1(a) = 1/|a|p = 1/pn is fixed for
each quantity ¯h, ω,m. The same is valid for the energy levelsE which also have the form
(37).

There are solutions of (36) (inL(b)2 (Qp, dx)) of the form:

ψ(x) = φn,b(x) whereb = h̄

2mω
(38)

andE = h̄ω(n+ 1
2) for any naturaln.

The situation is similar to the case of the ordinary quantum mechanical harmonic
oscillator (overR with C-valued functions), except for the fact that the wavefunctionψ(x)

is defined only forx s.t. |x|p < θ . If we follow the physical interpretation of thep-adic
norm [10] of a physical quantityA as the inverse of the exactness of its measurement, i.e.

δ(A) = 1

|A|p (39)

then, the restriction on the domain of the wavefunction expresses the limitation of the
exactness of the measurement of the coordinate of a quantum particle:δ(x) > 1/θb (we
remark that this definition ofδ(x) is not directly related to the definition of uncertainty in
ordinary quantum mechanics). Thus, in this interpretation it is not possible to measure the
position of a harmonic oscillator with an exactness which is better than 1/θb:

δ(x) > 1

θ b
= p 1

2(p−1)

√
|2mω|p
|h̄|p . (40)

In a similar way, by performing ap-adic Fourier transform, we obtain that we cannot
measure the momentum of the harmonic oscillator with an exactness which is better than
1/θc:

δ(p) > 1

θc
= p 1

2(p−1)
1√|2mω|p√|h̄|p . (41)

We note that the factor e
ixy
h̄ has been used instead of eixy in the integral representation (30)

of the Fourier transform in order to take into account the dimension of physical quantities.
In this interpretation we obtain that not only is there a minimum value for the product

of the precision of the measurements of position and momentum, but also, that there is a
minimal value to the precision with which we can measure thesingle quantity position or
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momentum. If we interpretδ(h̄) = 1√
|h̄|p

as ‘an exactness of measurement’ for ¯h, then by

(40) and (41) we have:

δ(x)δ(p) > p
1

p−1 δ(h̄). (42)

These ‘inexactness relations’ obviously have some relation, but are not equivalent, with the
Heisenberg uncertainty relations.

Finally we make two remarks. First, the termp
1

p−1 approaches 1 whenp→∞. Hence,
we obtain the inexactness relations

δ(x)δ(p) > δ(h̄) (43)

in the limit p→∞. We also note that 1√
|h̄|p

can be very small as compared with ¯h.

6. The p-adic description of the finite exactness of the measurement

The formalism of p-adic Hilbert space quantization and its corresponding physical
interpretation is described in [20]. Here we briefly summarize some essential parts of
this formalism.

We always use real numbers to describe measurement procedures both in classical and
quantum physics. This ‘real description’ has been used for a long time (at least since
Galilei’s work). We are so used to this description that we are no longer surprised that in
this description we operate with physical quantities as if they could be measured with an
infinite exactness. A real number having an infinite number of decimal digits, the formalism
implies all these digits might be measured, at least in principle. However, from the practical
point of view every concrete experiment permits only a finite exactness of measurement.

Is it possible to include this finite exactness in a mathematical formalism? We shall see
how ourp-adic formalism can be interpreted in this sense.

What can we obtain in a measurementS? Let us choose the unit of a measurement to
be 1 and let us fix a natural numberm (corresponding to the scale of this measurement).
As results ofS we can obtain only quantities of the form

x = ±
(x−k
mk
+ · · · + x−1

m
+ x0+ · · · + xsms

)
(44)

wherexj = 0, 1, . . . , m− 1 are digits in our scale. Denote the set of all suchx by Qm,fin.
It is natural to take1

mk
as a measurement of the ‘exactness’ ofS. Since we can practically

only achieve a finite exactness inS which we express by saying that there exists a fixed
numberk = k(S) such that the maximal achievable exactness ofS is equal toδ(S) = 1/mk.
This means that we can be sure only in the digitx−k but the next digitx−(k+1) is not well
defined inS (in this fixed scale).

We wish to create a number system which describes only finite exactness of
measurements. The set of ‘physical numbers’Qm,fin will be taken to be the basis of our
considerations.

First we are interested in the construction of the field of real numbersR on the
basis ofQm,fin. The fieldR is the completion ofQm,fin with respect to the real metric
ρ(x, y) = |x − y| corresponding to the usual absolute value (valuation)| · |. This metric
describes absolute values of physical quantities (with respect to the fixed coordinate system).
We define onQm,fin a new valuation corresponding to the exactnessδ(S).

Set |x|m = mk for x given by equation (44) (we assume thatx−k 6= 0); | · |m is a
pseudovaluation, in the sense that it has the following properties:
• |x|m > 0 and|x|m = 0 iff x = 0;
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• |xy|m 6 |x|m|y|m;
• |x + y|m 6 max(|x|m, |y|m) (the strong triangle inequality).
Setρm(x, y) = |x − y|m and completeQm,fin with respect to this metric†. Denote this

complete metric space byQm (m-adic numbers). This is a ring with respect to extensions
of the usual operations of addition and multiplication. Ifm = p is a prime number, then
we obtain the field ofp-adic numbersQp.

Of course, from the mathematical point of view it would be better to work in a field
than in a ring. Therefore, in this paper we have studied quantum field models overQp.
However, from the physical point of view it is better to use the general scheme on the basis
of m-adic numbers.

As in thep-adic case, for anyx ∈ Qm we have a unique canonical expansion (convergent
in the | · |m-norm ) of the form

x = x−n/mn + · · · x0+ · · · + xkmk + · · · (45)

where xj = 0, 1, . . . , m − 1, are the ‘digits’ of them-adic expansion. This expansion
contains only a finite number of digits corresponding to negative powers ofm. We interpret
these numbers as providing a description of the finite exactness of a measurement. However,
expansion (45) shows that there is a new element in them-adic description which is not
present in the description of real numbers. There exists quantities described by (45) with
an infinite number of digits corresponding to positive powers ofm. It is very natural to
consider such quantities as infinite quantities (with respect to our fixed unit 1). At the
moment we are not sure whether such quantities might be useful in physics. However,
there is always the possibility of restricting our attention to finite quantities, i.e.x described
by (45) with xl = 0 for all l larger that some finitek (depending onx).

Now the difference between real andm-adic descriptions of measurement is clear. If
the exactness is infinite and the values of all observables are finite, then we have the real
numbers description. If the exactness is finite and some values of observables may be
infinite, then we have them-adic numbers description.

Herem plays the role of a parameter characterizing the structure of the fixed scale.
Different scales are useful for different experiments. However, differentm-adic descriptions
are equivalent from a practical point of view, for example the exactnessδ(S) = 1/2k can
be realized approximately asδ′(S) = 1/3l for some suitablel. But at the same time the
ringsQm andQm′ , m 6= m′, are not isomorphic.

Now we consider the process of quantization. Further, we shall follow the so-called
statistical interpretation of quantum states.

Any measurement process has two steps:
(1) a preparation procedureE ;
(2) a measurement of a physical quantityBphys in the states which were prepared with

the aid ofE .
According to the statistical interpretation, a quantum state represents an ensemble of

similarly prepared (with the aid ofE) systems. Typically a preparation procedureE is based
on the filtration with respect to one of properties of a physical object. In particular, a
wavefunction describes the statistical distribution of this fixed property.

Let Aphys be the fixed physical quantity and a preparation procedureE = EA is realized
as the filter with respect to values ofAphys. EA generates statistical ensembles of statesψα
corresponding to valuesα of Aphys. Further, usingψα, we can prepare mixed states where
ψα arises with a probabilityPα. It is important to note thatψα = ψα(EA).
† This is the so-called ultrametric, i.e. the strong triangle inequalityr(x, y) 6 max(r(x, z), r(z, y)) holds.
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Now, consider the second step of a measurement process. There is the stateψ = ψ(EA)
prepared by the preparation procedureEA and a physical quantityBphys. Values ofBphys are
measured on the statistical ensembleψ .

The standard mathematical description of a measurement process uses as the space
of states a complex Hilbert spaceH. States are normalized vectorsψ ∈ H, physical
observablesBphys are described by self-adjoint operators inH. The expansion ofψ with
respect to an orthogonal basis{en}:

ψ =
∑

cnen (46)

has a standard statistical interpretation (see, e.g. [13, 14]).
The dependenceψ = ψ(EA) does not play any role in thisH-description, in the

following sense. Suppose the stateψ is constructed with the aid ofAphys, ψ = ψA =∑
cnAenA (here the statesenA correspond to the valuesλn of Aphys). Then in principleψ

can be constructed with the aid of another physical quantityA′phys, ψ = ψ ′A =
∑
cnA′enA′ .

As ψA and ψA′ coincide as the elements ofH, all physical properties ofψA and ψA′
coincide.

However, it is not evident that if we measure the quantityBphys in the stateψA we
obtain the same result as in the measurement on the stateψA′ , despite the equality

ψ = ψA =
∑

cnAenA =
∑

cnA′enA′ = ψA′ (47)

in the complex Hilbert space (because this equality is a mathematical equality; in practice
it is realized as an approximation of one finite mixture by another (also finite) mixture; this
approximation may change the statistical behaviour crucially).

We shall now propose a formalism of quantization in ap-adic Hilbert spaceHp.
This formalism differs from the complex Hilbert space formalism. The main difference
is connected with the question about the equivalence of different representations of aψ-
function. The mathematical structure of theHp-formalism automatically generates non-
equivalent representations of aψ-function. Here the dependenceψ = ψ(EA) is essential.
Equality (47) does not imply that all physical properties of two statistical ensemblesψA
andψA′ coincide.

In the p-adic Hilbert space formalism we have to consider the exactness of a
measurement of values ofAphys. This exactness generates a metric on the space of states.
Following our general scheme (with the mathematical restriction,m = p is a prime number)
we choose the unit 1 and the prime numberp which describes the scale of a measurement
process. Let3 = {λ} be values of a physical quantityAphys. Suppose that these values are
measured with the exactnessδ(Aphys) = 1/pk, k ∈ Z, i.e.

λ = λ−k/pk + · · · + λsps λj = 0, 1, . . . , p − 1. (48)

This is an expression of the fact that we are sure of the digitλ−k but not sure of the
next digit λ−(k+1). Using a preparation procedureE = E(Aphys,3), we construct the states
corresponding to the valuesAphys = λ. Denote these states by the symbolsψλ, λ ∈ 3.
Then it is possible to prepare statistical mixtures of these states. They are, by definition,
linear combinations of theψλ:

ψ =
m∑
n=1

cneλn cn = an + ibn an, bn ∈ Q. (49)

The spaceHfin of vectors (49) is complete with respect to a metric corresponding to the
exactness of a measurement of values ofAphys. This completion is ap-adic Hilbert space
Hp. The main difference with the complex case is that the metric (consequently, the
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completion) depends onAphys, thusHp depends onAphys. As in the complex formalism,
physical quantitiesBphys are realized by linear operatorsB in Hp. However,Hp was built
on the basis of the finite exactness of a measurement ofAphys. It would be very naive to
hope that theHp-formalism could predict exact values ofBphys. We are able to predict
values ofBphys only with a fixed exactnessδ(B) which is connected with the exactness of
a measurement ofAphys, δ(A). We suppose that the values of an arbitrary physical quantity
Bphys could be predicted only with the exactnessδ(B) = 1/‖B‖, where‖B‖ being the
operator norm ofB, if ‖B‖ 6= 0 (the dependence onA is due to the dependence of the
p-adic Hilbert spaceHp on the preparation procedure).

Thus, the main difference between the standard quantum formalism and thep-adic
formalism can be seen in the fact that the latter takes into account the finite exactness of
measurements of physical quantities. In ourp-adic approach one has the possibility of
predicting the exactness of measurement of a physical quantityBphys which is described by
an operatorB in the p-adic Hilbert space (as the inverse to the norm ofB). This already
applies in the case whereλ is an eigenvalue ofB,Be = λe, i.e. in thep-adic approach
we cannot say that in the statee the physical quantity has exactly the valueλ (with the
probability 1); this value also can be measured only with the exactnessδ(B) = 1/‖B‖.
For example, thep-adic position and momentum can be interpreted asusual position and
momentum, but measured with a finite exactness. In this sense our formalism contains a
lesser idealization than the usual quantization based on complex numbers. Of course, as
in any mathematical formalism describing a physical model, our theory also contains some
ideal elements for which seem to be impossible to verify in an experiment. These are infinite
quantities which are described byp-adic numbers having an infinite number of digits in the
canonical expansions.

The idea of using a finite exactness of measurements to modify the present quantum
formalism has been expressed before, for example by Prugovecki [21–23] which contains an
analysis of the role of exactness of individual measurements in quantum theory. However,
Prugovecki tried to describe a finite exactness of measurements by real numbers, giving the
main attention to a finite exactness of measurement for incompatible observables described
by non-commuting operators. From our point of view this problem is already very important
in the case of a single physical quantity. Another approach based on a finite exactness of
measurement was developed in the framework of so-called positively defined operator-
valued measures (see Davies [24], Ludwig [25], Holevo [26]).

The probability interpretation of quantum states in thep-adic quantum formalism is
similar to the standard one. However, there are some differences concerning the presence
in a p-adic Hilbert space of quantum states which do not have the standard probability
interpretation in the framework of the Kolmogorov axiomatics [27].

We start from the consideration of quantum states which permit a standard statistical
interpretation. Suppose that the physical quantityBphys is described by the symmetric
operatorB in thep-adic Hilbert space. Leten be the system of eigenvectors ofB : Ben =
λnen. We consider the finite mixture of this vectors with rational coefficients:

ψ =
N∑
k=1

ckek ck ∈ Q (50)

satisfying to the normalization condition
∑N

k=1 c
2
k = 1. Then, as in the usual quantum

formalism, we predict that the physical quantityBphys yields in the quantum stateψ the
valueλm with probability c2

k . The same probability interpretation can be used for mixtures
with coefficientsck = ak + ibk, ak, bk ∈ Q. In fact, this is a large class of quantum states
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(it might even be reasonable to assume that all quantum states, which may be prepared by
some physical preparation procedure, have the form (50)).

However, ap-adic Hilbert space also contains quantum states which do not permit the
standard statistical interpretation. In particular, these are finite mixtures of eigenvectors
with non-rationalp-adic coefficients. We propose using, for such states, the probability
interpretation based on the so-calledp-adic probability theory, see [1, 3, 28, 29] (which is
based on a generalization of the frequency approach of Mises [30, 31], corrected by further
developments of Kolmogorov, Martin-Lof, Chaitin and others).

In this probability formalism probabilities are defined as limits of relative frequencies,
but these limits are considered with respect to thep-adic topology on the field of rational
numbersQ. It is evident that all relative frequencies are rational numbers; thus their
asymptotics can be studied, not only in the standard real metric onQ, but also in any metric
(or more generally topology) onQ and, in particular, in one of thep-adic topologies.
In [1, 3, 28, 29] we presented an extended class ofp-adic random sequences which did
not have the property of the statistical stabilization with respect to the real metric (the
relative frequencies oscillate with respect to the real metric, but they stabilize with respect
to the p-adic metric). Further,p-adic frequency probability theory was reformulated by
using the measure-theoretical approach [28, 29] wherep-adic probabilities were defined as
normalizedQp-valued measures. The properties ofp-adic frequency probabilities were
used to formulate the corresponding system of axioms. One of the interesting properties
of p-adic probabilities is the possibility of realizing negative rational numbers asp-adic
probabilities [28, 29].

Therefore ourp-adic Hilbert space quantum formalism implies the existence of
generalized quantum states with unusual statistical behaviour. This statistical behaviour
is totally chaotic from the point of view of the standard probability theory, although it is
well described byp-adic probability distributions (see [32–35]). The crucial point of these
investigations is the possibility to consider negative probability distributions as well defined
mathematical objects in the framework of thep-adic probability theory. In particular, this
gives us the possibility to propose ap-adic probability description of the Einstein–Podolsky–
Rosen paradox (see [36, 37]).

We can also interpret the use ofp-adic (orm-adic) numbers as a way of inducing a
fundamental length in quantum physics theory. Let us consider ap-adic space-time model:

M4 = U1/lx × U1/ly × U1/lz × U1/lt

where lx, ly, lz, lt have the formpk, k = 0,±1, . . .. In this discrete space-timelx, ly, lz, lt
are the minimal lengths for space and time intervals. It is evident that thep-adic space-time
M4 is an additive group. We can define the analogue of Lorentz transformations inM4.
We plan to study this model (in particular, the Lorentz invariance ofp-adic quantum fields
model) in subsequent papers.

We have presented (one of the possible) interpretations ofp-adic quantum models. What
about the classical limit ofp-adic quantum models? We expect that by using the calculus of
pseudodifferential operators [1] we can study the relations between quantum and classical
models onp-adics.
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Sci., ParisA 278 583–5
[17] Escassut A 1995Analytic Elements inp-adic Analysis(Singapore: World Scientific)
[18] Schikhof W 1984Ultrametric Calculus (Cambridge Studies in Adv. Math. 4)(Cambridge: Cambridge

University Press)
[19] Albeverio S and Khrennikov A Yu 1996p-adic Hilbert space representation of quantum systems with an

infinite number of degrees of freedomInt. J. Mod. Phys.B 10 1665–73
[20] Khrennikov A 1996 The ultrametric Hilbert space description of quantum measurements with a finite

exactnessFound. Phys.26 1033–54
[21] Prugovecki E 1966 An axiomatic approach to the formalism of quantum mechanics 1J. Math. Phys.7

1054–69
[22] Prugovecki E 1967 On a theory of measurement of incompatible observables in quantum mechanicsCan. J.

Phys.45 2173–219
[23] Prugovecki E 1973 Simultaneous measurement of several observablesFound. Phys.3 3–18
[24] Davies E B 1976Quantum Theory of Open Systems(London: Academic)
[25] Ludwig G 1983Foundations of Quantum Mechanics(Berlin: Springer)
[26] Holevo A S 1982Probabilistic and Statistical Aspects of Quantum Theory(Amsterdam: North-Holland)
[27] Kolmogorov A N 1956 Foundations of the Probability Theory(New York: Chelsea)
[28] Khrennikov A Yu 1995 An extension of the frequency approach of R von Mises and the axiomatic approach

of N A Kolmogorov to thep-adic theory of probabilityTheor. Prob. Appl.40 458–63
[29] Khrennikov A Yu 1995 Statistical interpretation ofp-adic quantum theories withp-adic valued wave functions

J. Math. Phys.36 6625–32
[30] Mises R 1957Probability, Statistics and Truth(London: Macmillan)
[31] Mises R 1964The Mathematical Theory of Probability and Statistics(London: Academic)
[32] Khrennikov A Yu 1995p-adic probability interpretation of Bell’s inequality paradoxesPhys. Lett.A 200

119–223



5784 S Albeverio et al

[33] Khrennikov A Yu 1993p-adic theory of probability and its applications. A principle of the statistical
stabilization of frequenciesTeor. Mat. Fiz.97 348–63

[34] Khrennikov A Yu 1995p-adic probability distribution of hidden variablesPhysica215A 577–87
[35] Khrennikov A Yu 1995p-adic probability description of Dirac’s hypothetical worldInt. J. Theor. Phys.34

2423–34
[36] Feynman R P 1987 Negative probabilityQuantum Implications Essays in Honour of David Bohmed B J Hiley

and F D Peat (London: Routledge) p 235
[37] Muckenheim W 1986 A review on extended probabilitiesPhys. Rep.133 338–401


